Numerical Methods for Nonlinear PDEs in Finance

نویسندگان

  • Peter A. Forsyth
  • Kenneth R. Vetzal
چکیده

Many problems in finance can be posed in terms of an optimal stochastic control. Some well-known examples include transaction cost/uncertain volatility models [17, 2, 25], passport options [1, 26], unequal borrowing/lending costs in option pricing [9], risk control in reinsurance [23], optimal withdrawals in variable annuities[13], optimal execution of trades [20, 19], and asset allocation [28, 18]. A recent survey on the theoretical aspects of this topic is given in [24]. These optimal stochastic control problems can be formulated as nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). In general, especially in realistic situations where the controls are constrained (e.g. in the case of asset allocation, we may require that trading must cease upon insolvency, that short positions are not allowed, or that position limits are imposed), there are no analytical solutions to the HJB PDEs. At first glance, it would appear to be a formidable task to develop a numerical method for solving such complex PDEs. In addition, there may be no smooth classical solutions to the HJB equations. In this case, we must seek the viscosity solution [12] of these equations. However, using the powerful theory developed in [7, 5, 3] we can devise a general approach for numerically solving these HJB PDEs. This approach ensures convergence to the viscosity solution. The contributions of this article are as follows:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

متن کامل

Numerical Solution of Nonlinear PDEs by Using Two-Level Iterative Techniques and Radial Basis Functions

‎Radial basis function method has been used to handle linear and‎ ‎nonlinear equations‎. ‎The purpose of this paper is to introduce the method of RBF to‎ ‎an existing method in solving nonlinear two-level iterative‎ ‎techniques and also the method is implemented to four numerical‎ ‎examples‎. ‎The results reveal that the technique is very effective‎ ‎and simple. Th...

متن کامل

Feynman-Kac representation of fully nonlinear PDEs and applications

The classical Feynman-Kac formula states the connection between linear parabolic partial differential equations (PDEs), like the heat equation, and expectation of stochastic processes driven by Brownian motion. It gives then a method for solving linear PDEs by Monte Carlo simulations of random processes. The extension to (fully)nonlinear PDEs led in the recent years to important developments in...

متن کامل

Numerical solution of time-dependent foam drainage equation (FDE)

Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...

متن کامل

Energy-conserving numerical methods for multi-symplectic Hamiltonian PDEs

In this paper, the discrete gradient methods are investigated for ODEs with first integral, and the recursive formula is presented for deriving the high-order numerical methods. We generalize the idea of discrete gradient methods to PDEs and construct the high-order energypreserving numerical methods for multi-symplectic Hamiltonian PDEs. By integrating nonlinear Schrödinger equation, some nume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010